8 Optimal Detection for Additive Noise Channels: [1=
DiCase

We now derive the optimal demodulator. From the previous section, we
have seen that instead of analyzing the waveform channel, we can convert it
to an equivalent vector channel. The length of the vector is the same as the
size K of the orthonormal basis for the waveforms s1(t), so(t), . .., sy (f). In

this section, we will assume K = 1. This is the case, for example, when we
use PAM.

Definition 8.1. Detection Problem: When K = 1, our problem un-
der consideration is simply that of detecting the scalar message S in the
presence of additive noise N. The received signal R is given by

R=5+N. 5""@_’

e S is selected from an alphabet S containing M possible values st
(M)
., s\,

® Dy (S(j)> =P [S— sU )} = p;.
e S and N are independent.

A detector’s job is to guess the value of the channel input S from the value
of the received channel output R. We denote this guessed value by S. An
optimal detector is the one that minimizes the (symbol) error probability

P(S):P{S‘#S].

8.2. The analysis here is very similar to what we have done in Section 3]
Here, for clarity, we note some important differences:

e In Section [3, The channel input and output are denoted by X and Y,
respectively. Here, they are denoted by S and R.

e In Section [3], the transition probabilities are arbitrary and summarized
by the matrix Q. Here, the transition probabilities is basically con-
trolled by the additive noise.

e In Section [3, both X and Y are discrete. Here, S is discrete. However,
because noise is continuous, R will be a continuous random variable.
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Even with these differences, several techniques that we used in Section
will be applicable here.

Example 8.3. Review: To re-connect with what we studied in [3], let’s try
to find the Q matrix when the additive noise is discrete. Suppose

0.3, s=—1, 0.2, n e {-0.5,40.5},
ps(s) =< 0.7, s=1, and py (n) = ¢ 0.6, n=0, ()
0, otherwise, 0, otherwise. oL Fr
Because R = S + N, we know that “% 20-2
-05 06 o5 "
(a) given S = —1, we have R = -1+ N:
Fms(' % =|°N(" -V
0.6
f[R-—V] 5= -1] = Prys (V-0 ""'I," ] 10-1 X
-15 _y ~o.3 K

(b) givee have R =1+ N:

FltSLrI1)=rNLr-
0-f
Of-l. ?-l
0.7 4 15 v
Th t . . . b
e Q matrix is given by O\V -1.5 -1 =6 0.5 1 1.§
-1 o-t 0.6 ©.1 o o
Q:[PLR='|S=A]] = ’
1 o © O b oe o.2

Note that each row of the Q matrix is simple a shifted copy of the noise
pmf. The amount of shift is the corresponding value of s for that row.

8.4. Formula-wise, when the additive n6isé is discrete, each row of the Q
matrix (as in Example is given by

(Dhis(r]s) =@1(7” = 5). (44)
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8.5. When the additive noise is ontinuous, there are uncountably many
possible values for the channel output R. Hence, representing conditional
probabilities in the form of a matrix Q does not make sense here.

When R is continuous, the conditional pmf pg|s(r|s) is replaced by the
conditional pdf frg(r|s). For additive noise N with pdf fy(n), we have

@z|s(7"|3) :@V(T —s). (45)

Example 8.6. Suppose the discrete additive noise in Example [8.3] is re-
placed by a continuous additive noise:

A al‘:_t
S R 1/a
i 1.3800
-1 -1.7267 fy (n)
1 1.5429 > n
1 1.9886 r - a
1 1.1556 ST 7
1 1.8981
1 0.9856 -1
1 0.7173
-1| -0.9756 1
1 1.2335 L -
-1/ -1.1320
-1/ -0.0612 o
-1 -2.1877 1 N S S N S S
-1| -0.9035 oo
1 0.6967 I
1 1.3127 [ A
1 0.1629
1 1.4026 0 R S S N
-1/ -1.6058 R

Figure 27: Binary PAM under “Triangular” Noise

8.7. The optimal detector, which minimize the error probability, is the
MAP detector:

Smap (1) = aTgGHSlaXPS(S)fmS (rls) = al"géfslaxps(s)fzv (r—s). (46)

Because event [ = j] is the same as event [S = sU)], we also have

wwmap (1) = argmax p;fy (7" — s(j)> ) (47)
je{1,2,...M}

101



When the prior probabilities are ignored, we have the (sub-optimal) ML
detector:

SuL (1) = argmax fpg (7 |s) = argmax fx (r — ). (48)
s€S s€S
and '
ww, (r) = argmax fy (r — S(j)> : (49)
je{1,2,...M}

8.8. Graphically, here are the steps to find the MAP detector:

(a) Plot prfn(r —sW), pafn(r —s®), ..., parfn(r — sW)).
e Note that they are functions of r.

e This is similar to scaling the rows of the Q matrix by the corre-
sponding prior probabilities in Section [3| to get the P matrix.

(b) Select the maximum plot for each (observed) r value.

e If there are multiple max values, select any.

e The corresponding s\ is the value of Syap at 7.
Example 8.9. Back to Example [8.6]

0.35
0.3
0.25
0.2
0.15
0.1

0.05

Figure 28: MAPD for Binary PAM under “Triangular” Noise

102



p, fy (O)(x—(s“’—a»: w(x (s 4 a))

0.35 pz(X*(S(j)*a))= p(x=(s" +a))
1 1 : C : : L (p,+p)x=p,(s? -a)+p, (s +a)
0.3 i i i A | i | : 77777 L . )Ei=7(2.7‘77(:17)779:3{(71)=,O.4

0.1
y= B8O (¢ a)p (¢ 1a) (5 -a)

=Pl pl;N (0)[15 ' +a)-(s? a)}

03x0.7x+

r — 2 (14=T)) =0.105

0.05

Figure 29: Solving for myap in MAPD for Binary PAM under “Triangular” Noise

Definition 8.10. The ith decision “region”, denoted by D; for a decoder

5(r) is defined as the collection of all the r values at which r is decoded as
(@)
s\,

e The collection Dy, D», ..., Djys should partition the whole observable
values (support) of R.

Example 8.11. Back to Example [8.6]

X ~ s, reD, D, =(-%,7yxp ) <Lo
Suap (r) ) where , »I
s, reD,, D, = [TMAP’OO)' Tmap
[ >
D,

Figure 30: Decision Regions in MAPD for Binary PAM under “Triangular” Noise

8.12. The error probability of a detector can be found via its success prob-
ability
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:iP(C\S:s@)P [S:s@} :ip{ :s@}pz
:ipz [ ] sz [N+S GDZ’]
—sz/fN r— st i psz r—=s >

=1

7

This gives
PE)=1-P(C)

—z_;pz/fN r— st dT—Z/psz r— sl )

C

Although, at first, the above expressions may look complicated, it is similar
to what we used when we did in Section [3} graphically, the area under the
max (selected) plot is P(C).

P(£)=1-P(C)

Example 8.13. Back to Example [8.6

0.35 0.35

0.3 0.3
0.25 0.25
0.2 0.2
0.15 0.15
0.1 0.1

0.05 0.05

r
z-MAI‘

Figure 31: Probability of Successful Detection for Binary PAM under “Triangular” Noise
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8.14. Gaussian Noise: When the noise NV is Gaussian with mean 0 and
standard deviation oy, r %_:
1 _l(L)Q s
N(n) = e 2\ov/ N~N(o o%)
fn(n) Bron .
Definition 8.15. In general, a Gaussian (normal) random variable X
with mean m and standard deviation o is characterized by its probability
density function (PDF):

frxlw) = —o—e 207"

2ro

To talk about such X, we usually write X ~ N(m, c?). Probability involv-
ing X can be evaluated by

P[X e A= Afx(x)dx.

In particular,
P[X € [a,b]] = / fx(z)dx = Fx(b) — Fx(a)

where Fx(z) = 7 fx(t)dt is called the cumulative distribution function
(CDF) of X.

We usually express probability involving Gaussian random variable via
the @) function which is defined by

F; 1 o2
Q(z):/\/%e_wix.

Note that Q(z) is the same as P[S > z] where S ~ N (0,1); that is Q (2)
is the probability of the “tail” of A (0,1).
It can be shown that

e () is a decreasing function
. Q)=
° Q(—2)=1-0Q(z)
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Figure 32: @-function

o This is useful for converting the argument of the () function to
positive value.

e For X ~ N(m,c?),

P[X>c]:Q<C_m>.

o

8.16. Three important noise probabilities for N ~ N(0, 0%):
L
P[N>d =0 gN),P[N <c=1- G(qﬁ),P[a< N <b] = &L—g—) - Q(E)

Note that all strict inequalities above can also be replaced by the ones
that also include equalities because the noise is a continuous random variable
and hence including one particular noise value does not change probability.

Example 8.17. In a binary antipodal signaling scheme, the message S is
randomly selected from the alphabet set S = {—3,3} with P [S = —3] = 0.3
and P[S = 3] = 0.7. The message is corrupted by an independent additive
noise N ~ N (0,2). Find the MAP detector $yap (7).

0.2r
0.15¢
0.1r

0.05f




For a given r, we select §(r) = s if and only if

p2fn ('r — 3(2)> > pLfy (r - 5(1>>

L 3= L (=)
p2\/%o_€ >p1\/%0_€

Area, = p,Q r s pQ‘ ¢ T in L ‘

=H52(t)_sl(t)H o 20 d p
o=4N,/2 _ s 7" _ d _o.P
0 Area, = pZQ[ . j_ sz[Zn r In 0,

™ — s s — 7+
P (&) =mQ (T) + P20 (T) =0.015
d d
=mQ (2—+51n@) +pQ (— -= n]ﬂ)
o D o

We can see from the last expression that the error probability of the

optimal (MAP) detector depends on s and s® only through their distance
d.
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8.18. For M-ary PAM under additive noise channel where R = S + N,
S N,and N ~ N(0,0%)

Smap (1) = arg max (ps(s)fn (r—s)) (50)
sc
= arg max _%(T“;VS) ) 51
%es (ps Vi 27TUN ( )
= arg max ( 204 In pg(s) — (r — 3)2> (52)
seS
Ey
= arg max (0 Inpg(s) — —+s- 7’) , (53)
seS 2

and from (52), when we set all pg(s) to be the same (or ignore the pg(s) in
our calculation)
Sui (r) = argmin (r — s)° = argmind (r, s) .
ses ses
Definition 8.19. In “standard” multi-level PAM, we required that the
@spaeing between all adjacent signals to be the same. Furthermore, all M

signals are-equally likelQTo minimize the average energy, we also require
that the constellation is“~centered” around zero.

N\ A4

)
)) )
0 A AT »

Suppose the distance between adjacent signals is d, then the M signals
are represented in the constellation by

s(j):g(Qj—l—M).
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Example 8.20. Probability of Detection Error for Standard Quaternary
PAM

szN(T - 5(2)) P3f1v(7” - 5(3))

'P1f1v(7” - 5(1))

A(,u r("J,

(t
(= ” /) _Aér<bz

MAP
n

e

oSr(cl/ / /

(R ¥

V),cl L /

PN

o
M=d > 006 d @

w4 3
If we deﬁn Q (L), then
P(C):i(l—Q)Jri(l—QQ)Jri(l—QQ)Jri(l—Q):1—§q:1—gq
Therefore, the detection error probability is
PE)=1-P(0) = 0 =50 (50). (54)

For easier comparison with other modulation schemes, we express P (&)
in terms of SNR = % To find the average energy per bit £, we first find
the average energy per symbol:

=S5 (2) () () - (3)) -

Scaling Es by log, M, which is the number of bits per symbol, we get the
average energy per bit:
E, E, 5% 5

’ logo M logoM  log,d 8
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Hence, we can the distance replace d in by

i = \/gEb:Q\/gEb
3 [2¢/35E) 3 2E
P(€) = 5@ 2; =50 <\/50—5> . (55)

Suppose the noise process in the waveform channel is AWGN with PSD %

Then, o2 = & and
3 4F
P(&) = 5Q (y/gﬁ)) : (56)

2

8.21. At this point, we know that we are able to find the optimal detector
(the MAP detector) and the corresponding detection error probability by
first converting the waveform channel into the vector channel. Note that to
do this, we will first need to find the orthonormal basis functions (possibly
by GSOP) can projects all the signals into the signal space. However, it
turns out that we don’t have to do any of these at all. Once we have gone
through all the derivation of the optimal detector and the corresponding
detection error probability and got answers in the vector channel, we can

which gives

convert our answers back to the waveform calculations. This is what we will
do next.

8.22. Correlation detector: Recall, from (b3), that for additive noise
channel where R=S5+ N, S_IL N, and N ~ N(0,0%),

L
Smap (1) = arg max (0]2\, Inpg(s) — 5 +r. 3) .

seS
Now,
resl) = (r(t),s;(t) = / r(t)s; (t)dt.

Therefore, the calculation involved in finding the optimal detector can be
performed directly on the original waveform functions of the signals.
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8.23. Matched filter implementation of the optimal detector: In
practice, to calculate the correlation (inner-product) (r (t),s(t)) above, we
use filtering. Such filter is called the matched filter.

Recall that when a signal r(t) passes through a filter whose impulse
response is h(t), the output of the filter is given by

{r«h}(t) = /T(T)h(t—T)dT

Let’s try h(t) = s*(T — t) for some constant 7. This filter is called the
matched filter. Note that

h(t—71)=s"(T—(t—7)=s"(T—t+71).
Therefore,

{r+h}(t) = /T(T)S*(T—t—I—T)dT.

In particular,

t=T
r(t)— s°(T — ) "% — (r(t), s(t))

Conclusions: Implementation of optimal (MAP) detector can be done by
matched filters.
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